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ABSTRACT

The problem of minimax robust coding for classes of multiple-access channels with
uncertainty in their statistical description is addressed. We consider: (i) discrete
memoryless multiple-access channels with uncertainty in the probability transition
matrices and (ii) discrete-time stationary additive Gaussian multiple-access channels with
spectral uncertainty. The uncertainty is modeled using classes determined by 2- alter-
nating Choquet capacities. Both block codes and tree codes are considered. A robust
maximum-likelihood decoding rule is derived which guarantees that, for all two-user
channels in the uncertainty class and all pairs of code rates in a critical rate region, the
average probability of decoding error for the ensemble of pairs of random block codes
and the ensemble of pairs of random tree codes converges to zero exponentially with
increasing block length or constraint length, respectively. The channel capacity and

cut-off rate regions of the class are then evaluated.
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I. INTRODUCTION

For two-user discrete memoryless multiple-access channels whose
statistical description (i.e., the probability transition matrix which
determines the channel) is known the coding theorems of [1] - [3] guarantee
that, if the pair of coding rates lies in a critical region (termed
achievable rate region), there exists a pair of block codes such that the
error probability of the decoder approaches zero exponentially with
increasing block length., Similar results for two—user tree codes were
established in [4].

For channels whose statistical description is not perfectly known but

the determining quantity (e.g., the transition probability matrix) belongs
to a class, the achievable region was derived in [5] for arbitrarily varying

MAC's. In [6] a universal coding approach was applied to discrete-

memoryless MAC's. According to this approach a finite number of

representative channels exists so that, if we code for these channels, all

the other channels in the class have asymptotically optimal coded
performance. Two possible disadvantages are: (i) a large numer of
representative channels may be necessary and (ii) the construction of the
representative channels for a given class can be very complicated.
In [7] another method of universal coding which does not use the notion
of representative channels was introduced. According to it a "packing
lemma" investigates positions of codewords independently of the channel and is used t
upperbound the decoding error. The decoding rule employed is termed
"maximum mutual information decoding™ and is equally independent of the

channel statistics.



Here we consider another approach termed minimax robust coding which is

based on a worst—case design. The least-favorable channel is singled out
and we use its probability transition matrix for maximum-likelihood
decoding. Then the probability of error for the ensemble of two-user random
block codes approaches zero exponentially with increasing block length for
all channels in the class. The disadvantage is that the asymptotic
performance for all but the least-favorable channel in the class is not
optimal. However, this approach requires only one representative channel
for the class (the least-favorable one) which can be explicitly found in
several interesting cases. For single user channels this approach was first
considered in [8] and for specific uncertainty classes in [9], the companion
to this paper. By restricting attention to specific uncertainty classes of
channels we can obtain an explicit characterization of the capacity region
and of the mdximum-likelihood decoding rule which will ensure the asymptotic
convergence of the probability of decoding error to zero for all channnels
in the class. Therefore this paper is to multiple access channels as the
work of [9] is to ordinary Shannon channel. In contrast the more general
(and thus less explicit) characterization of capacity regions in [5] is to
multiple access channels as the compound channel work of [10] is to the
ordinary Shannon channel.

In this paper we apply the minimax robust coding approach for block and
tree codes to two-user discrete-memoryless (DM) MAC's and discrete-time
stationary additive Gaussian (SG) MAC's which belong to uncertainty classes

determined by 2-~alternating Choquet capacities [11]. Our choice of these

uncertainty models is justified in two ways. First, important uncertainty
models like contaminated mixtures ({I2], total-variation neighborhoods [127,
band models [13] and extended p-point models [l4] are capacity classes and

have pluved an important role in hypothesis testing [I15] and



filtering [16]. Second, the least-favorable channels can be explicitly
found for the uncertainty classes described by any of the above models.
Although in this paper we restrict attention to DM~MAC's and discrete-time

stationary Gaussian channels (SGC's) (continuous-time SGC's are also

discussed), our results can be extended to other classes of MAC's; e.g.,
first-order Markov MAC's. As it is common in multi-user information theory
the results are established for two-user MAC's, the extension to the multi-
user case is then quite straightforward.

The paper is organized as follows. Minimax robust coding for discrete-
memoryless MAC's with uncertainty in the probability transition matrices is
discussed in Section II and minimax robust coding for discrete-time
stationary Gaussian MAC's with uncertainty in the spectral density of the
additive Gaussian noise is discussed in Section III. In each of these
Sections we first formulate the problem and introduce the necessary concepts
and notation. Next, we present channel coding theorems for both block codes
and tree codes for the case of mismatch, i.e., when the decoder employs a
maximum-likelihood rule which is based on inaccurate knowledge of the
channel statisties. Finally, we derive minimax robust coding theorems for
the ensemble of two-user random block codes and the ensemble of two-user
random tree codes and channels with staﬁistical uncertainty determined by Choquet
capacities and evaluate the channel capacity region and the cut-off rate
(actually the general error exponent) region for the class of channels.
Then, in Section IV a brief summary of this paper and some conclusions are

presented.



II. ROBUST CODING FOR DISCRETE MEMORYLESS MULTIPLE-ACCESS CHANNELS

A. Channel Uncertainty Determined by 2-alternating Capacities

Suppose that for a two-user channel X1 and X2 are the input alphabets,

Y is the output alphabet, and F = o(Y) is the c-algebra generated of subsets

of Y. A discrete memoryless two-user MAC is characterized by its transition

probability matrix p(y|x1,x2), x, € Xy, X, € X5, y € Y. For each

12

X = (XT’XZ) € X1 X X2 consider the conditional probability measure

PX(A) = J dP(y|x1,x2) where A ¢ F. Let p(y[x1,x2) denote the Radon-Nikodym
= A
derivative of PX Wwith respect to a measure A. The reference measure i

is chosen according to the particular case of interest. Thus, if the
alphabet Y is a continuum, A is the Lebesgue measure on Y. If Y is discrete
(e.g., a finite set), then X is the measure which assigns equal mass to all
the elements of Y. Finally, if Y has both discrete and continuous
components, then A turns out to be a convex combination of the Lebesgue
measure on the continuous part of Y and the measure that assigns equal mass
to all the elements of the discrete part of Y.

We assume that for each x e X1x X2 the probability measures PX are only

known to lie in a convex class generated by a Choquet 2-alternating capacity

{111

v

P = {P e¢P | P (A) €v (A), ¥Ac F} (1)
x X X X

where P denotes the class of all probability measures on (Y,F), and Ve is



2-alternating capacity on (Y,F) with vx(Y§ = 1., For notational

convenience,in the sequel we will drop the dependence of vx and Pv on X.
= X

A Choquet 2-alternating capacity [11] on (U,F) is a finite set

function, which is increasing, continuous from below, continuous from above
on closed sets, and satisfies v(@) = 0 and v(AUB) + v(A B) £ v(A) + v(B) for
all A, B ¢ F. Notice that any finite measure v is a 2-alternating capacity;

in this case the uncertainty class generated by (1) reduces to Pv = {v}. If

we further assume that U is compact then all the uncertainty models

mentioned in Section I are capacity classes. If U is not compact [e.g.,

U = (-», )] only the band model can be defined in terms of a capacity.

An example of a Z2-alternating capacity class is the total-variation

neighborhood model [12] defined by
Pv={P|PO(A)—P(A)]<g , ¥¢eF} (2)

where PO is a known measure (not necessarily a probability measure) and e in

0,17 is the degree of uncertainty in the model. Then (2) can be expressed in

the form (1) if we set

v(A) = min{PO(A) + g , 1} (3)

which is a 2-alternating capacity. See [12], W3] and {14] for a description of
other capacity classes.

In the sequel we will need the following fundamental result which is

due to Huber and Strassen [14]:

Lemma 1: If v is a 2~alternating capacity on (Y,F) and Pv is a convex

class of probability measures determined by it as in (1), then there exists




a unique X measurable function L Y + [0,»] with the defining property

that for each 6 ¢ [0, =] and Ae defined by Ae = {nv > 8}

oA(n) + v(A®) < 8A(Ag) + v(Ag) (4)

~

for all A ¢ F. Furthermore there exists a measure P in Pv such that for all
6 ¢ [0,]
P({m_ < 8}) = v({m_ < 8}) (5)

kl
v v

which means that P makes ﬂv stochastically smallest over all P in Pv, and "v

~ ~

is a version of dP/diA, the generalized Radon-Nikodym (R-N) derivative of P

~

with respect to A; that is dP/dA may be infinite on a set of A measure O.

The function Ty is termed the Huber-Strassen derivative of v with

~

respect to A (v may not be a measure). The probability measure P singled

out by Lemma 1 is termed the least-favorable measure of the class Pv. Let

~ ~ ~ ~ A

P = P' + P" be the Lebesgue decomposition of P, where P' is absolutely

~

continuous with respect to A and P" is singular with respect to X (that is,

it concetrates all its mass on sets of )\ measure 0). Then,

5'(A) JA m, dA (6a)

and

1t

PM(A) v(A A {nv = o}), {6b)

for all A ¢ F. For example for the total-variation model of (2) the Huber-Strassen

A~

derivative “v = p is defined as



;(y) = max{c”, min{c”,wo(u)}} (7)

where Ty = dPO/dA is the R-N derivative of PO of (2) and ¢”, ¢”” are

chosen so that P(Y) = 1. See [12] - [14] for the definition of p for the
other capacity classes.
We emphasize that for the case treated in this section of the paper the

probability measure PX and the Choquet capacity Vx actually depend on x

(e.g., Ve of (3) actually depends on x through Py  and P1 . which vary with
’ ’

Xx) and so does p_, = m_ .
X X v,

It should be noted that Huber-Strassen derivatives of generalized
capacities [a generalized capacity is defined in the same way as a 2-
alternating capacity except that it is required to be continuous from above
on compact (and not just closed) sets] with respect to o-finite (and not
just finite) measures can be constructed [20, Chapter IV]. Then, Lemma 1
still holds provided that it is properly modified. One of the implications
of this extension is that several of the most useful examples of capacity
classes (e.g., e-mixtures,variation neighborhoods) are generalized

capacities when U is o-compact (and not just compact).

B. Mismatch Coding Theorems for Two-User Block and Tree Codes

Suppose that in the presence of uncertainty about PX(A), X € X1x X2,

A ¢ F, the decoder mistakenly assumes that (or attempts to estimate PX and

comes with an estimate that) PX is the probability distribution governing



the statistics of the DM-MAC. Therefore it uses a maximum-likelihood (ML)
decoding rule based on p(y|x) = (dPX/dA)(y) instead of the true
p(y]§)=(dPX/dA)(y). This situation is characterized by mismatch. Then the
following result holds for block codes used on a two-user MAC [6]:

Theorem 1 : Consider a DM-MAC characterized by PX(A), A g F=0(Y). Let
Qj,j = 1,2 be an arbitrary probability assignment on the user j channel
input symbols. Suppose the decoder employs inaccurate ML decoding based on
p(+]|+,+) instead of the true probability transition matrix p(+]e,+). Then,

for R = (RI’R ,R3) satisfying

2
Rj < Ij(g,p;P) (8)
where R3 =R *+R,, Q= (Q1,Q2),
. p(yle,XZ)
IHC_),p;P)*I f J In ——= dP_(y)dQ(x,)dQ(x,),
X 7X,0Y J p(y[x{,xz)dQ(x{)
X
1
(9a)
. J J 5<y!x1,x2)
1_(Q,p;P) - DR — dP_(y)dQ, (x,)dQ, (x,), (9b)
2 KXY f p(y|x1,xé)dQ2(xé) X e
X,
2
pUy]x, )

dQ1(x1)dQ2(x2),

IXWJXZD(YIX;.Xé)dQ1(x{)sz(xé)

(9¢)




the average probability of decoding error PE over the ensemble of pairs of
random block codes of rates (R1,R2) and length n (for which the n letters of

each codeword are chosen from the input alphabets X1 and X2 independently

nR nR
. . 1 2
and according to Q1 and Q2, respectively, while the [e ] and [é ]

codewords are mutually independent and equiprobable) is upperbounded by

Pn(g,g,p;P) given by

i~

- ) - ;
Pn(g,g,p,P) exp { n[Ej(pj.Q.p,P) ijj]} (10)

J=1

where o = (p.,p4,0,) and for p in [0,1]
e 1°P2P3

P

- - 1
E1(D,Q,p;P) = ~ln{IX JX JY p(y|x1,x2) *
172

p

——

1
- . 1+p 210
[Jx1p(y|x1,x2) dQ1(x1)] }dPK(y)dQ1(x1)dQ2(x2),

(11a)

1
- e 'y 1P
[szp(ylx1,x2) dQZ(xz)] dPE(y)dQ1(x1)dQ2(x2)},

(11b)



10

and
p
~ o - T
E3(pr»P’P) - 11’1{ JX1JX2JY D(YIX1,X2)
1
[ T+p p
t 1] \
[ X, X2p(y|x1.x2> dQ, (x1)dQ,(x3) ] dP§(y)dQ1(x1)dQ2(x2)}.
(11e)
For this theorem to be valid it is required that the mismatch mutual

information Ij(g,p;P) j =1,2,3 of (9a) - (9c) should be strictly positive

and the exponents Ej(p,Q,p;P) j =1,2,3 of (11a) - (11¢) should be strictly
positive for all p in [0,1]. These positivity requirements are satisfied

for the choice of p in Theorem 3 below.

The achievable region for the two-user MAC and inaccurate ML decoding

is then defined as the closure of the convex hull of the union of the sets

R(Q) of rate pairs (R1,R2) which satisfy (8) as Q = (Q1,Q2) ranges over all

possible probability measures on X1 X X2.

Reaark 1. We used the notation of Ij(g,p;P) for j = 1,2,3 instead of

I(XW;Y|X2), I(X2;Y|X1), and I(X1,X2;Y), respectively, to emphasize the



dependence of the mismatch mutual information functions on Q and both p and

~

P; the notation I(X1;Y|X2)is usually reserved for the matched case (p=p).

Also notice that for notational convenience we have dropped the dependence

of p_, Px’ px, and PX on X.

Remark 2, We consider Theorem 1 important in two ways: as being a
fundamental intermediate result necessary for the proof of Theorem 2a below,
and as an interesting independent result which completely characterizes the

achievable rate region for the case of mismatch (i.e., when the actual

channel probability transition matrix p is different that the estimate p

employed in the ML decoding).

For two-user tree codes and a decoder which employs a ML test based on

«,+) (about which there is uncertainty) the

p(+|+,*) instead of the true p(-

following result holds:

Theorem 2 : Under the assumptions of Theorem 1 suppose that user j
1
(j = 1,2) is assigned a tree code of rate Rj N n Mj nats per channel

symbol satisfying (8) and constraint length K, and consider the ensemble of
random two-user tree codes generated by assigning N channel input letters

independently and according to the probability distribution Qj to the

branches of the trees. Then the average probability of decoding error PE

over the above ensemble of pairs of tree code is upperbounded by PK(Q,Q,p;P)

given by

y 2 - .
Ple,@piP) = 1 e B PP e(nie (o L0,p5P)-p RS D)

11



12

+

-KNE D3P p
K 3(p3,Q,p )f(N[E3(p3,Q,P3P)'p3(R1+R2)])

{1+ £(NE, (p5,Q,p5P)~p R, 1) +£(NLE,(p3,Q,p,P)-p3R,)
(12)

where f(x) = e_x/(1-e_x), p = (p1,p2,p3), 0 s pj < min{Ej(pj,Q,p;P)/Rj,1} for

j=1,2, and 0 £ < min{Ej(p3,Q,p;P)/R1,E2(03,9,p;P)/R2,E3(p3,9,p;P)/(R1+R2),1}.

93 =
The exponents Ej(p,Q,p;P) are defined by (11a) - (11c). For this theorem

to be valid it is required that IJ(Q,p;P) > 0 and Ej(p,g,p;P) >0 for p in

[0,1] and j = 1,2,3; conditions which are satisfied for the choice of p in
Theorem 4 below.

The proof of Theorem 2 is based on a straightforward modification of

the proof for the case with accurate ML decoding (i.e., p=p) given in [4].

The same arguments as in [4] may be used the only difference being that

Ej(p,g,ﬁ;P) instead of the usual Liao error exponents Ej(p,g) = Ej(p,Q,p;P)

are involved in the equations, since the decoder now employs p and not p for
the ML decision rule.

C. Minimax Robust Coding Theorems for Two-User Block and Tree Codes

In this subsection we assume that the probability measure PX which

governs the statistics of the channel is only known to lie in a class of the

form (1) desribed in Section II.A. The channel encoder employs a ML

decoding rule based on p in a way desribed in Theorems 1 and 2, The goal

is to choose p so that for all code rates larger than a critical rate the



probablity of decoder error approaches zero with increasing blocklength (or
constraint length) for all channels in the class.

Equipped with Theorems 1 and 2 and the Huber-Strassen theory of
least-favorability (as condensed in Lemma 1) we now prove the main results
of this section.

Theorem 3 : Suppose the probability measure PX on Y belongs to a class of

the form (1) and PX is the element of the class singled out by Lemma 1.

~ ~

Suppose further that the decoder's ML decoding rule is based on p = dPx /dA.

Then the following inequalities are true for all pairs of probability

measures (Q1,Q2) on X1 X X2 and p in [0,1]

IJ(Q,p;P) 2 IJ(Q,D;P) 2z IJ(Q.D;P). J =123 (13)

and

EJ(D,Q,D;P) z Ej(p,Q,p;P) 2 Ej(p,Q,p;P), J=1,2,3. (14)

Furthermore, the operating point (p,Q,p) where (p,Q) = arg min Pn(g,g,p;P)
(p,Q)

~

and the channel determind by P form a saddle point for

min  max Pn(g,g,p';P), i.e.,
(p,Q,p") P

1o

Pn(g,

A

p3P) ,p3P) £ P (p,Q,p3P) (15)

1t 1

P (p,
ntk
Finally, for any pair of rates (R1,R2) it is necessary and sufficient to lie

inside the region determined by the conditions

13



A A

R-<I-’;P’.:1v2’
i J(Q P;P), J 3 (16)

where Q = (Q1,Q2) ranges over all pairs of probability measures on Xlx X2,

in order to guarantee that the average probability of decoding error for the

ensemble of pairs of random block codes of length n and rates (R1,R2)
converges to zero exponentially with increasing n for all channels in the
class.

Remark 3. The rate region determined by (16) represents the channel

capacity region of the class desribed by (1). Similarly, the rate region

FN

determined by Rj < Ej(p,g,p;P) where Q = (Q1,Q2) ranges over all pairs of

probability measures on X1x X2 represents for p = .5 the cutoff rate region.

~

Remark 4. Notice that equations (13) and (15) indicate that the measure PX

(singled out by Lemma 1) characterizes the worst case (or least-favorable)
channel in terms of both the information rate and the error probability

among all the channels in the class Pv defined by (1).
X

Proof: We first prove the inequalities in (13) - (15). 1In particular, the
right-hand inequalities in (13) for j = 1,2,3 are results of Jensen's

inequality and the concavity of 1ln(+). Similarly, the right-hand inequality

in (14) for j = 1 is a result of Holder's inequality

o 1/ 1/
| raan < (2] [fgBayu]! /8 (17)
-1 - .
where 1 < a <=, 1 < B8 < =, and o + B = 1, when applied for
p : o P
5 . >
1+ T+ 1
f = p(ylx1,x2)( I a = (14p) /0, g - Py, x50 Pply[x,,x,) (o)™

14



15

B = 1+p, and du = dQ](x1). For j=2 we only need to set du = sz(xz),

whereas for j=3 we should set du = dQ1(x1)dQ2(x2) and use double integrals

instead of single integrals in (17). Finally, the right-hand

inequality in (15) is true since

~A A A A

Pn(e,g.p;P) Pn(Q,Q;D;P) s P (p,Q,p;P)

72N

where the first inequality holds because of the definition of é and @, while

the second inequality follows from the right-hand inequalities of (14) and

the fact that Pn [see (10)] is a decreasing function of EJ for j =1,2,3.

Next we prove the left-hand side inequalities in (13), (14), and (15).

We start with the left-~hand side inequality in (13). We may use the

~

following sequence of arguments. First we define the functions Gj(px’Px)

to be

5(y|x1,x2)

dp_(y) (18a)

G (5 ,P ) = f in =
Tox’ X Y ' ' X
IXTD(yix1.x2)dQ(x1)

R ply|x,,x,)
fY In I aP_(y), (180)
sz(y|x1,x2)dQ(x2) =

’p\(Y|X1 ’XZ)

dpP_(y), (18¢)

G (; ,P ) = J in =
Y ? t \ X
3 X [X1JX2p(y|X{,x2)dQ(x1)dQ(xz) =

and observe that we can write Ij(g,p;P) = JX1JX2Gj(px’Px)dQ1(X1)dQZ(XZ) for

~

J =1,2,3. Here we will make use of the dependence of p and P on x and



16

~

thus we employ the unabbreviated notation Py Px. Notice that, if we show

that

~ ~

Gj(px,PX) 2 Gj(px,Px), j=12,3 (19)

for all x € X.x X,, then the left-hand side of (13) follows. Equation (19)

1 27

~

holds because we can write Gi(pﬁ'PK) = IY gj(pg)dPg where for j = 1,2,3 gj

~ ~ ~

is an increasing function of px and according to Lemma 1 Px makes pX

stochastically smallest over all PX in Pv .
= X

The left-hand inequality in (14) can be proved in a similar way. We

~

now define the functions Hj(p,pX,Px) as

i 1

~ ~ B ~ 1+
H(p,p WP ) = fy p(y|x %) p[J’XTp(yIX{,X2) Paax17ap, (), (20a)

P

- R
p[fx p(y|x1,xé)
2

1
1
+de<xé>]de¥<y>, (20b)

~

and

v A
- . 1+p ) b gty 1P : 1y 1P
Hylp,p,,P,) = jy p(ylx,,x,) [fx1fxzp(Y|X1’X2) dq, (x1)da,(x}) ] dP, (y)

(20c)

Since Ej(p,Q,p;P) = exp[—jx1JXZHJ(p,pK,Pg)dQ](x1)dQ(x2)] the left-hand side

inequality in (14) is satisfied if

~ ~ ~

Hj(p,DE,PX) Hj(p,px,PX) (21)

1A%



is valid for all x e X,;x X, and p in [0,1]. Eq. (21) can be proved

similarly to (19), that is, by defining an appropriate decreasing function

of pX and applying Lemma 1. The left-hand side inequality in (15) is then a

straightforward application of the left-hand side inequality in (14) for

p =p and Q = Q and the fact that Pn is a decreasing function of the Ej' S.
Next we prove the positivity of Ij(g,p;P) and Ej(p,g,p;P) j=1,2,3 for
all p = dP/dA with P in PV all p in [0,1], all probability measures Q =

(Q1,Q2) on X1 X X2, and p = dP/dx as singled out by Lemma 1. We first show

A A A

that Ij(g,p;P) >0 j=1,2,3. We use the fact that Ij(g,p;y) > 0 [the

usual Liao functions are strictly positive unless the channel output are
independent in which case they are zero; we exclude this case by requiring

that all measures Px which belong to the uncertainty class described by (n

are not (for fixed y) constant functions of (x1,x2)]; the proof is based on

Jensen's inequality and the concavity of In{+). Then we use the left-hand

side inequality in (13) to prove the desired result. Similarly to prove

~ A

that Ej(p,g,p;P) >0 j=1,2,3 we first need to show that Ej(p,g,p;P) > 0.

The proof of this inequality for j =1 1is based on applying Holder's

1

- T
inequality [see (17)] for f = p(yix1,x2) P a =1+, g =1, 8 = (1+p)/p

and dy = dQ1(x1). For j = 2 we only need to change dp to du = dQ2(X2)’

whereas for j = 3 we need to set du = dQ1(x1)dQ2(x2) and use double

17
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integrals instead of single integrals in (17). Again the inequalities are
strict unless the channel inputs and the channel output are independent.
Finally, we use the left-hand side inequality in (14) to prove the desired
result.

We can now proceed to the final stage of the proof of Theorem

A A

First, because of (13) Rj < Ij(g,p;P) implies that Rj < Ij(g,p;P) for all

A

P in Pv. Then Theorem lapplied for p = p, implies that, for the ensemble of

random block codes of rates (RI’RZ) and length n described there

the average probability of decoding error converges to zero exponentially
with increasing n. Since this is true for all P in the class under
consideration, the sufficiency of condition (16) is established. To prove

3
the usual capacity theorem for DM-MACs:
its necessity, notice that according to the converse of if a

pair of rates (R1,R2) lies outside the region determined by (16) as Q =

(Q1’Q2) ranges over all possible probability measures on X1 X X2, then the

~

asymptotically good performance is violated for the channel determined by P,
which is a member of the aforementioned class. This completes the proof of
Theorem 3.

At this point we discuss the choice of the operating point, that is of

a triple of the form (Q,Q,E), where p is vector parameter in [0,1]3 involved

in the minimization of the error probability, Q is the probability measure

on the input alphabet X1 X X2, and p is involved in the ML decoding at the

receiver. This choice depends on the main objective of our optimization.

If our main objective is to operate at the maximum transmission rates (near
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the boundary of the region determined by (16)], then the operating point

A A A ~

should be (p,Q,p) where Q = (Q1,Q2) is the pair of pdf's which achieves a

~ A A A A A A A

particular point (Ri’RZ) = (11(9,p;P), Iz(Q,D;P)) on the boundary of the

~ A A A

achievable region and p = arg min_Pn(g,g,p;P). However, if our main
o

~

objective is to minimize the error probability, then (E,Q,p) (é and § as

defined in Theorem 3) should be the operating point and the rates of

transmission (R1,R2) should lie inside the region determined by

Ry < IJ.(C:),p;P) j =1,2,3 (Ry = R+ R,) instead of that determined by (16).

As a final comment for Theorem 3, notice that, under mild continuity

A A A A A

requirements on the convex functions Pn(:,g,p;P) and Pn(;,:,p;P) and their

~

derivatives, the minima involved [the minimizing arguments are p and (é,é),

respectively] exist.
A similar result holds for two-user tree codes:
Theorem # : Under the assumptions of Theorem 3 and for any pair of rates

(H1’R2) which lies inside the region determined by (16), the probability of
decoding error for the ensemble of two-user random tree codes of rates
(Rl’R2) and constraint length K(which is described in Theorem 2 when applied for p=;)

converges to zero exponentially with increasing K for all channels in the

class. Furthermore, if we define (p'Q') = arg min PK(g,g,p;P) where
(p,Q)

0 ¢ p, S mintE (p, ;PY/R.,1} for j = 1,2
pJ { J(Djs@;P, j J
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A A

0 <p_ < mm{E (p p P)/R1,E (p3,Q p P)/RZ,E (p3,Q D; P)/(R +R ), 11,

(22)

~

then the operating point (p',Q',p) and the channel determined by P form a

saddle point for min_ mgx PK(Q,Q,S;P); i.e., the following inequalities
(p,Q,p)

hold for all P in Pv:

Plp',Q",p;P) ¢ Pele"sQ",p;P) s P (p,Q,p;P) (23)

Proof: We first prove the inequalities in (23). The left-hand side
inequality in (23) is a result of the left-hand side inequality in (114)

applied for p = p' and the fact that P_ is a decreasing function of the Ej's

K
for j = 1,2,3. Then the right-hand side inequality in (23) is true

because of the definition of (P’ Q') above ; 4he vight-hand side wequality
M ((Lf) OW\C\ “'L\Q {ac'} ‘H‘\o\"’ P 1S a clecvfaﬁuv\ﬂ ?{uvxc‘ton ,y#'“/le E S/J—-1 2 3.

The positivity requirements on I (Q p P) and E, (p,Q p P) §j =1,2,3

which are necessary for the validity of Theorem 2 are the same as those for
Theorem 1 and are satisfied as shown during the proof of Theorem 3. To
complete the proof of Theorem 4 notice that because of the left-hand

inequality in (13) the rate region determined by (16) lies inside the rate
region determined by Rj < Ij(g,p;P) J =1,2,3 for all P in the uncertainty
class considered. Furthermore, because of (14), any p = (p1,p2,p3) which

satisfies the conditions (22) also satisfies these conditions when

~ A

E (0,Q,p;P) is replaced by E, (p Q, p P) for j = 1,2,3. Consequently all the

~

assumptions of Theorem 2 are satisfied and Theorem 2 applied for p = p

implies that for the ensemble of two-user random tree codes of rates (RT’Rz)



in the region described by (16) and constraint length K the average

probability of decoding error converges to zero exponentially with

increasing K. Since this is true for all P in the uncertainty class, the

proof is complete.
As discussed at the end of the proof of Theorem 3 the choice of the

operating point depends on the objective of optimization. For tree codes a

similar choice should be made and we omit the details.

21
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IITI. ROBUST CODING FOR STATIONARY GAUSSIAN MULTIPLE~ACCESS CHANNELS

A. Spectral Uncertainty Classes Generated by Choquet Capacities

Suppose that X1= X2= Y = (-»,») for the input and output alphabets and

the discrete-time stationary Gaussian multiple-access channel (SG-MAC) is

characterized by the probability transition matrix p(n)(z|§1,§2) for X, € X?

X5 € Xg, y € Yn given by

—n/ZIB(n)’—1/2 (n)]'

p(n)(XIET,KZ) = (2w) exp{-1/2(1~§1—§2)T[§ 1(z—§1-§2)}. (24)

In (24) |A]| denotes the determinant of the matrix A and the matrix §(n) is a

correlatiom matrix of order n (which because of the stationarity is a
symmetric Toeplitz matrix) associated with the spectral density ¢(w),
we [-m,7] = Q

Suppose the spectral density ¢ is the R-N derivative of a spectral
measure ¢ defined on sets A € B (where B is the c-algebra generated by
subsets of @ = [-m,7]) with respect to the Lebesgue measure on Q. The

spectral measure ¢ is only known to lie in the convex class Qv defined by
¢, = (o c o | ¢(A) < v(A), ¥ & ¢ B, o(Q) = v(Q)}. (25)

In (25) ¢ is the class of all spectral measures on (Q,B). We impose on the

spectral measures ¢ the additional constraint o([-w,w]) = v([-w,n]) =

2
2ro ,which is a fixed noise power constraint and transforms the normalized

2
spectral measures ¢(A)/(2wg ) into probability measures; this is necessary
for the validity of the Huber-Strassen theory of least favorability.
All the results about Choquet capacities and uncertainty classes of

probability measures presented in Section II.A are also valid for the
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~ ~

spectral uncertainty classes. Let ¢ and ¢ denote the Huber-5trassen

derivative and the least-favorable spectral measure in ¢V.

~

We will also assume that ¢ is absolutely continuous with respect to A
. - . . ter
(i.e., ®<<)). This Is not so restrictive because as we can show the total-

variation spectral class defined by

¢, = (o |<1>0—<1>|<e}
where ¢ in P,1] is known assuming the known nominal spectral measure @O Lo

satisfy ¢0<<X, implies that ¢<<A, as well. -Similar conditions on the nominal

spectral measures of the contaminated mixture class [12] and the band class

[13] result in ¢ being absolutely continuous with respect 1o A.
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B. Mismatch Coding Theorems for Two~User Block and Tree Codes

It is assumed that the channel inputs satisfy average input energy

constraints of the form

11} = nE,, § = 1,2 (26)

ELLX; 3

where || || is the Euclidean norm of the n-dimensional random vector Xj and

Ej is the input energy per channel use for user j.

n
Suppose that in the presence of uncertainty about p( )(¥|§1,§2)
(induced by the spectral density ¢) the user mistankenly assumes that

“(n . Ty
p( )(Xl§1’§2) (induced by ¢) is the n-th order probability transition matrix

governing the statistics of the SG-MAC. Let ¢ and ¢ denote spectral

measures for which ¢ = dé/dir and ; = d;/dx, respectively.

The above situation is characterized by mismatch as in the case
de%?ibed in Theorem 1, Therefore we can apply Theorem 1 to this special
case. We will start with the evaluation of the mismatch mutual information
and the mismatch error exponent functions for the new case.

In the case of discrete~time SG-MAC we have to deal with triplets of n-
i X2

tuples , , y LY. . . s
ple (51 52 y) whose components (x1 i yl) and (le,sz,yJ) may be

strongly correlated. It is advantageous to follow the technique of [17,
Section 4.5.21 and make the problem equivalent to that of n parallel

independent additive Gaussian noise (AGN) channels. This involves a unitary

n
transformation of Kyo X and y associated with g( ) which preserves the

2,

mutual information relationships and the average input energy constraints.
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. 2
The variance oi of the Gaussian noise of the i-th channel is the i-th

(n)

eigenvalue of the Toeplitz matrix £ . Furthermore the initial average

input constraints (26) become [18, Section 7.5]
n
) E.. = E, j=1,2 (27

where the j-th user's input to the i-th channel is a zero-mean Gaussian

random variable with variance E, .. = i =
i Let E3i Eli + EZi for i 1,2....,n.

Once the SG-MAC has been decomposed to n parallel AGN DM-MAC's we can
apply the theory of parallel AGN channels (see [18, Section 7.5]), (24), and
the definitions (9) and (11) of Theorem la. The asymptotic (in the limit of
large n) mismatch Liao functions and the asymptotic mismatch error

exponents take the form

2
N 13 E'i E'i o
I.(r ,036) = lim = } [1/21n(1 + % )+ 1/~ (1= =] (28)
o nre = g, E,.+to; g,
i Ji i i
and
~ 1 n _1 El
E.(pyr ,03¢) = lim — [ {P?_ 1+ —31 ]
J J n->ow i=1 (1+p)0i
2
E'i o,
(T+O)Oi 9,
2 -~
for j = 1,2,3. In (28) - (29) ¢, 0,, and Eji §=1,2,3 for 1 =1,2,..0, n

are the eigenvalues of the n-th order Toeplitz matrices induced by the

spectral densities ¢, ¢, and rj (j =1,2,3), respectively. The eigenvalues



Eji Jj = 1,2 satisfy the average input energy constraints (27) as discussed

above and E_. = E_.+ E_.. Then q<n)(x) is the n~th order probability
3i 11 21 J -
density function (pdf) on the input alphabet X? induced by the spectral

density rj Jj = 1,2. Consequently, by taking the limits as n»= in (27),

(28), and (29) and using the discrete-time version of the Toeplitz

Distribution Theorem [19] we obtain:

1 i
5 J_ﬂ r (@i (dw) = E (30)
- r (w) r (w)
Hr,0:0) = 7 [" {n[re =] L fn- 201 (e, (31)
-1 o(w) rj(w)ﬁb(w) ¢(w)
rj(w)

T

~ 1
E y _ b - +‘—"‘"“‘—;’_"
j(p»rj’¢ b) e I-W {(p-1)1nl1 (1+p)d(w)

r.(w)
win[1e —I (1029 11 (aw). (32)

(1+p) p(w) d(w)

for j = 1,2,3.

Next we consider the input spectral densities rj which maximize

Ij(rj,¢;¢) for j = 1,2,3, respectively, the asymptotic Liao functions, for

the matched case (¢ = ¢). The spectral density rj has been shown in [18,

Section 7.5] to be defined in terms of a parameter Yj as:

~ ~

r (@) = max{o,§j— o(w)}y we [-m,7] j=1,2,3 (33a)

where the parameter Yj is determined by the condition:

26
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1

J

where E3 = El + E2.

We can now state the main result of this Section which follows from
Theoren 1 when it is applied to SG-MAC's:
Theorem 5 : Consider a two-user discrete-time stationary additive Gaussian

channel with independent inputs and n-th order probability transition matrix

n)
P( (2151,52) induced by spectral density ¢(w), w € [-w,w]. User j employs

the n-th order input pdf qgn)(g) induced by the spectral density rj

satisfying (33a)-(33b) for j = 1,2 and the decoder employs inaccurate ML
decoding based on p(n)(y|§1,52) (induced by the spectral density ¢) instead

of the true p(n)(x|§1,§2). Consider the ensemble of pairs of random block
codes of length n and rates (R1,R2) whose codewords are chosen independently

with equal probability and the n letters of each codeword are chosen from

~(n)

the input alphabet Xj according to qj (x). Then, if the rates R1, R2
satisfy
R, < 1.(Y.,050), § = 1,2, (34)
5 J(J¢¢)J 12,3 3
where,

1

Y Y
- o -
IV 050) = g J{;(w)<;j} {1n—d ¢ [ 1] o) -0(w) [Tacaw), (35)

o(w) Y, ¢(w)
J
then for large n the average error probability of decoding error PE is

upperbounded by



3 .~ -
P -n E, P Y - p.R.
< j§1 exp{-n[ J(pJ YJ ¢;9) pJRJ]} (36)

where for p in [0,1]

- o~ Y
1 1 -3
E.(p,Y,,0;¢) = - - He-nin[14==[=— -11]
b T f{¢(m)<Yj} LRCRPYN
Y.
+ wnf1et—d 0= Thaw) . (37)

d(w) ¢(w)
For the validity of this Theorem it is required that for all ¢ on Q the

mismatch Liao functions satisfy Ij(YJ,¢;¢) > 0 and the mismatch error

exponents satisfy Ej(p,Yj,¢;¢) > 0 for all p in {0.1]. These positivity

requirements are satisfied for the choice of ¢ and Yj in Theorem 7 Dbelow.

Remark 5. The mismatch error exponents in (37) have been evaluated for an

input spectral density P [given by (33a)-(33b)] which maximize the mutual

information functions Ij(rj,¢:¢) of (31). If the objective is to maximize

~ o~

the error exponents Ej(p,rj,¢;¢) of (32) (and thus minimize the bound on PE)

the appropriate input spectral densities rjp is given by

-~

FROE <1+p>max{o,?jp— o)}, we [-m,11, (38a)
g2 [ ) e (38b)
I {¢(w)<Yjp} Jp ’

and the mismatch error exponents become:

28
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~ - Y Y
1| . - d{w)
HEPNTITIIES o P (G- 138 1n[ 1[0 1701+ -p2227 T} 2 (dw)
Je ¢(w) ¢(w) ¢(w)
(39)
For two—user tree codes of rates (R1,R2) where Rj = % 1og2Mj bits per
channel symbol with Viterbi decoding and a ML test based on p( )(_[;,;) [the

overall equivalent block length in channel input symbols is now n={(L+X-1)N ,

which corresponds to Llog?Mj input bits of user j, j = 1,2] a similar result

holds:
Theorem 6 : Under the assumptions of Theorem 5 suppose a tree code for
user j (j = 1,2) has constraint length K and rate Rj = % logzMj bits per

channel symbol satisfying (34), and consider the ensemble of pairs of random

codes generated as described in Theorem 2, Then the average bit error

probability of the Viterbi decoder Pb is for large K upperbounded by

P—<1

P (p

K ,010) which can be obtained from (12), if we replace Ej(p,g,p;P) with

Ej(p,rj,¢;¢) for j = 1,2,3. The parameters pj must satisfy the same

conditions as for Theorem 2 provided that we replace the error exponents Ej



30

used there with the exponents defined in (37). The same positivity

requirements on Ij and Ej as these for Theorem 5 should be satisfied.
The proof of Theorem 6 is a straightforward extension of Theorem 2 to
the SG-MAC case and will be omitted. The same technique of decomposing to n

parallel AGN MAC's may be applied.

C. Minimax Coding Theorems for Two-User Block and Tree Codes

Next we assume that the spectral density ¢ which induces the transition
probability matrix p(n)(1|§1,52) is given by ¢ = do/dx where ¢ belongs to a

class of the form (25) described in Section III.A. The channel decoder

employs a ML decoding rule based on p(n)(-[-) (induced by a spectral density

¢) in a way desribed in Theorems 5 and 6 . The goal is to choose ¢ so that
the asymptotic convergence of the probability of decoding error is
guaranteed for all channels in the class. This is accomplished with the

following result:

Theorem 7 : Suppose the spectral measure ¢ [where ¢ = d¢/d) induces

p(n)(1|§1,52)] belongs to a class of the form (25) and ¢ is the element of

~

the class singled out by Lemma 1 which also satisfies ®<<X. Suppose further

that j—th encoder emplovys an input pdf “(n) . ~ )
PUt pAf a7 (x) induced by v, defined by (33a)-(33b)

~ ~

for ¢ = ¢ and ¥ = Y and the decoder's ML decoding rule is based on p(n)(~l-,-) induced t

~ ~

¢ where ¢ = do&/di. Then the following inequalities are satisfied for all ¢
with ¢ in ¢
v

~ ~ ~ ~

LY. ,b; AY ., 05 2 I, , -A j =
345 o5d) IJ(YJ d5d) 2 IJ(YJ,¢,¢), J 1,2,3 (40)

i\
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~ ~ ~

[i.e., the operating point (Yj,¢) and the channel determined by ¢ form a

saddle point for max min IJ(YJ,¢;¢)], and

~

A. > v A.A " .A

J
for all p in [0,1]. Furthermore, the conditions

~ A A

. S LY., 034), J = 1,2,
RJ IJ(YJ.¢ $), J = 1,2,3 (42)

are sufficient and necessary to guarantee that for the ensemble of pairs of

random block codes of length n and rates (R1,R2) desribed in Theorem 5

-~

(when applied for ¢ = ¢) the average probability of decoding error converges

to zero exponentially with increasing n for all channels in the class.

~ ~ A

Remark 6. The inequalities Rj < Ij(Yj.¢;¢) determine the channel capacity

region of the class described by (25) where the Liao functions are given by

~

Y

Y i) =LA S
Lo =gy jw(mwj} ey e 3

~ A

Similarly the quantities Ej(p,%b.¢;¢) obtained from (39) and (38a)-(38b) for

¢ = ¢ and given by

~ A A Y.
E (p,Y. ,0;6) = = f ~ - =32 A (dw) (45)
N jo I {¢(w)<Yjp} 3(w)

represent the error exponents of the class; for p = .5 the inequalities

A A A
Rj < Ej(p,Yjp.¢;¢) determine the cutoff rate region. Notice that the

boundaries of both regions are expressed in terms of the Huber-Strassen
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~ ~

derivative ¢ = d¢/dx which characterizes the worst-case (least-favorable)

channel.

Proof: The sequence of steps is similar to that for the proof of Theorem 3

but the individual steps differ. We first prove the inequalities (40) and

(41). To prove the right-hand side inequality in (U40) we first prove the

A A A ~ A

inequalities Ij(rj,¢;¢) 2 Ij(rj,¢;¢) 2 Ij(rj,¢;¢) for all input spectral
densities which satisfy (30) and j = 1,2,3. The first part of these

inequalities follows from the definition of ry [see (33a3)-(33b)]. The

second part of the inequalities can be proved by considering the difference
Ij(rj,¢;¢) - Ij(rj,¢;¢), gather the logarithmic terms together, .apply the

inequality 1nx 2 T—X—1 and show that the above difference is nonnegative.

Then, since the inequalities above are valid for all rj satisfying (30), we

can apply them to the case rj = rj (related to Yj) to obtain that

A A

IJ(YJ,¢;¢) 2 Ij(Yj,¢;¢) 2 IJ(YJ,¢;¢) where Yj is the parameter satisfying

f

(33b) for ¢ = o.

To prove the left-hand side inequality in (40) we use Lemma 1, a second lemma
the
(Lemma 2 below) and the following fact (See eq. (46) of [9] and justification
which follows). 1If g(u) > O for all u € A, u € B, then
ngdﬁ’ << ngdQ (45)
foramy spectral measure ¢ with Lebesgue decomposition & = ¢~ + &”~ where

¢”<<X and ¢~"1x (i.e., ¢ singular with respect to A).
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Lemma 2: Let g be a continuous decreasing function on the real line, let X
be a continuous real random variable, and let P be a probability measure on
the o-algebra generated by the subsets of the real line. Then, the

following relationship holds for all a and b with a < b:

f[a,b] g(X)dP - “fb P{X 5 tlg'(t)at + g(®)P{X s b} - g(a)P{x s a}.(46)
a

The proof of Lemma 2 is provided in [?2] (equations (47a)~(47b)) and will

not be included here.

we
Then prove the left-hand side inequalities in (40) -as follows. First, we
A

~ ~ A A far us?j
notice that dé = ¢dA. Then we define gj(u) = (Yj/u-l)/yjlj=1’2’3 and apply (45)

" to obtain that for the desired inequality to hold it suffices that

<£3n"}.w\u(e M‘Hr\ Mx‘? Paa—Q)
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-

~ o~ - & | ~ - S
J’{(D(YJ} gj(q))d(b ",{{¢)<YJ} gj((b)d(b) J = 1’2:3 (J‘l?)

Since gj is a decreasing

function with gj(Yj)=O and P{¢<0}=0 we can apply Lemma 2 for a=0, b=Yj

~ ~

twice, once for P=¢ and once for P=0¢, and then use the fact that ¢ makes ¢

stochastically smallest over all ¢ in Qv (Lemma 1) to show that (47) is

satisfied.
To prove the right-hand side inequalities in (41) we follow a procedure
similar to that for proving the right-hand side inequalities in (40). To

prove the left-hand side inequalities in (41) we define the functions
hj(a) = Ej(p,Yj,¢;(1—a)¢+a¢) for o in [0,1] and j = 1,2,3. Then, since hj

are convex functions of a the desired inequalities which can be written as

hj(1) 2 hj(O) become equivalent to ahj(a)/3a|a=o 2 0. After we evaluate the

directional derivative ahj(a)/aa at a=0 and apply (45) for the

Y
‘*&Xj)

function fj(u)= p(yj/u-1)/(pu+yj)Lthe desired inequalities hold if

~

f{;m;j} £;(9)de -‘—f{;&j} £5(¢)d0. (18

Finally, as for the proof of (47), we can use Lemma 2 for the decreasing
functions fj [for which fj(Y)=O] twice and Lemma 1 to show that (48) is

satisfied for all ¢ in ¢v.
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~ ~ ~ ~

To establish the positivity of Ij(Yj’¢;¢) and Ej(p,Yj,¢;¢) for all
¢ = do/dr with ¢ in ov and o in [0,1] we use thr right-hand side

inequalities in (40) and (41), respectively, and the fact that both

A A A A A A

Ij(Yj’¢;¢) as defined by (43) and Ej(p,Yj,¢;¢) defined by

”
8) = | N = Ve Jd -
Ei(p)7,0i9) = I{¢>(m)<Yj} 1n[1+~1—+—5[;(m) 1112 (dw) . (49)

A A A

are strictly positive for j = 1,2,3 because of their definitions.

To complete the proof of Theorem 7 we notice that because of (40)

A A ~ ~

R, <I.(Y_,¢;¢) implies that R, < I (Y., ¢; for all = d¢/dr with ¢ in & .
5 <100 050) dmp 5 <TI0, 050) ¢ v

~ ~

Then from Theorem > applied for ¢ = ¢ and Y = Y it follows that for the

ensemble of pairs of random block codes of rates (R1,R2) and length n

described there the average probability of decoding error converges to zero
exponentially with increasing n. Since this is true for all ¢ in the class
under consideration, the sufficiency of condition (42) is established. To

the wsual ¢ acdy veqion Hreorerm for DM-MAY
prove its necessity, notice that according to the converse o
the violation of any of the coditions (42) implies that the average

probability of decoding error converges to 1 exponentially for the channel

determined by 5, which is a member of the aforementionsd class.

The discussion for the choice of the operating point is similar to that
which followed the proof of Theorem 3 and we do not repeat it here,

The corresponding result for two-user tree codes is:
Theorem 8 : Under the assumptions of Theorem 4a condition (42) guarantees

that for the ensemble of pairs of random tree codes of constraint length X



-~ A A

and rates (R1,R2) (described in Theorem ¢ as applied for ¢ = ¢ and Y = Y)

the average probability of decoding error converges to zero exponentially
with increasing K for all channels in the class.

For the proof of this Theorem one can follow the same steps as for the
proof of Theorem 4 and use the various definitions involved in Theorems 5 ,
6, and 7 . The proof is therefore omitted.

It should be noted that all the results of this section can be extended

to continuous-time stationary additive Gaussian bandlimited (e.g., with

spectral densities defined on @ = [-w ,wo]) channels. Since Huber-Strassen

0
derivatives of capacities with respect to o~finite (and not finite) measures
can be constructed [20], these results can possibly be extended to

nonbandlimited [e.g., Q = (-»,«)] channels provided that the definition of

T, is appropriately modified. However, several of the most useful examples

of capacity classes (e.g., the e-mixtures and variation neighborhoods) are

not capacities when 2 is not compact.
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IV. SUMMARY AND CONCLUSIONS

We have addressed the problem of minimax robust coding for multiple-
access channels with uncertainty in their statistical description. For
uncertainty classes determined by Choquet 2-alternating capacities coding
theorems were proved for discrete memoryless channels with uncertainty in
the probability transition matrices, and for stationary additive Gaussian
channels with spectral uncertainty. It was established that for the
ensembles of pairs of random block codes and random tree codes the average
error probability of the decoder converges to zero exponentially with
increasing block length or constraint length, respectively, for all two-user
channels in the class, provided that the decoder employs a suitable robust
maximum-likelihood decodidng rule and the code rates lie inside a critical
region. The channel capacity region and the cut-off rate region for the
class of channels were evaluated. The boundaries of these regions , a well
as the aforementioned robust maximum-likelihood decoding rule are
characterized in terms of a Radon-Nikodym type derivative between the upper
measure of the Choquet capacity class and a Lebesgue-like measure defined on

the appropriate set.
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